Rates of Reduction of Some Cobalt(III) and Chromium(III) Complexes by Ytterbium(II)[†]

By RICHARD J. CHRISTENSEN and JAMES H. ESPENSON*

(Department of Chemistry and Institute for Atomic Research, Iowa State University, Ames, Iowa 50010)

Summary Kinetic studies on some reactions of the very strongly reducing bivalent lanthanide ion Yb^{2+} have been performed, with results indicating mechanisms comparable to Eu^{2+} reactions, although the Yb^{2+} rates are much higher.

considered a study of the Yb^{2+} — Yb^{3+} electron exchange rate, but did not attempt it after finding Yb^{2+} solutions were not sufficiently stable.

The complexes $Co(NH_3)_6^{3+}$ and $Co(en)_3^{3+}$ necessarily react with Yb²⁺ by outer-sphere (os) mechanisms:

$$CoL_6^{3+} + Yb^{2+} \rightarrow Co^{2+} + Yb^{3+} + 6L$$
 (1)

AQUEOUS solutions of Yb^{2+} can liberate hydrogen from water because E° is -1.15 v.^1 Nevertheless, quantitative kinetic studies on some of its fast reactions can be realized,

Both reactions follow second-order kinetics (Table 1) and occur much more rapidly than the corresponding reactions

TABLE 1. Rate constants for Yb²⁺-Co^{III} reactions^a

			$10^{-3}k_2$,	$10^{-3}k_{<1}$,
Complex	104[Со ^{пп}] ₀ ,м ^ь	[H+],м	M ⁻¹ S ⁻¹	$M^{-2}S^{-1}$
Co(NH ₃) ₆ ³⁺	$5 \cdot 5 - 40 \cdot 1$	0.006 - 0.056	$2 \cdot 28$	19.4
$Co(en)_{3}^{8+}$	$21 \cdot 2 - 150$	0.005 - 0.051	0.45	4.73
Co(NH ₃) ₅ H ₂ O ³⁺	3.0-10.8	0.005 - 0.20	31.5	158

* 25.0° and 0.20 M ionic strength.

^b Most of the runs were carried out under pseudo-first-order conditions, with $[Yb^{2+}]_0 \leq 10$ [Co^{III}]. A typical initial Yb²⁺ concentration was 2×10^{-4} M.

because Yb²⁺ solutions generated electrochemically in 10^{-3} — 10^{-1} M-perchloric acid decompose slowly. We have performed kinetic measurements on the reduction of several Co^{III} and Cr^{III} complexes by Yb²⁺, representing the first kinetic studies reported on Yb²⁺ reactions. Adamson²

of other reducing agents. In the case of $\text{Co}(\text{NH}_3)_6^{3+}$, for example, the values of k_2 , $M^{-1}\text{s}^{-1}$, are $2 \cdot 28 \times 10^3$ (Yb²⁺), $1 \cdot 2$ $(U^{3+})^3$, $1 \cdot 7 \times 10^{-3}$ (Eu²⁺)⁴, and $8 \cdot 8 \times 10^{-5}$ (Cr²⁺).⁵ The reactions are strongly catalysed by anions; the effect of free chloride ion on the apparent rate constant is illustrated in

† Work performed in the Ames Laboratory of the U.S. Atomic Energy Commission.

the Figure. The kinetic data are consistent with the rate law

$$-d[Yb^{2+}]/dt = (k_2 + k_{CI}[Cl^{-}])[Yb^{2+}][CoL_6^{3+}]$$
(2)

Values of $k_{\rm Cl}$ for the Yb²⁺ reactions are also given in Table 1. Again taking $Co(NH_3)_6^{3+}$ as an example, values of k_{Cl}/k_2 , M^{-1} , are 8.5 (Yb²⁺), 20 (U³⁺),³ and 140 (Cr²⁺).⁵ (The corresponding catalysis has not been reported for Eu^{2+} .) We suggest that the strong anion catalysis of os reactions results from the role of X⁻ as a pseudo-bridging ligand, the mechanism being the reduction of $CoL_6^{3+}X^$ by $M^{2+.6}$ The rates of reduction of $Co(NH_3)_5H_2O^{3+}$ by Yb^{2+} and Eu^{2+} are independent of $[H^+]$, but the latter reaction occurs more slowly $(k_2 = 0.074 \text{ m}^{-1}\text{s}^{-1}).^4$ In contrast, the Cr²⁺ reaction rate⁷ varies as 1/[H⁺], implicating the inner-sphere (IS) reduction of Co(NH₃)₅OH²⁺. The os mechanism suggested for Eu²⁺⁴ appears applicable also to Yb²⁺; this suggestion finds support in the pronounced catlytic effect of chloride ions: $k_{\rm Cl}/k_{\rm H_2O} = 5.0$ (Yb²⁺). In contrast, the IS reactions of Cr2+ with this oxidizing agent and others⁸ are subject to only a very small acceleration by free anions.

We have also studied the kinetics of a series of reactions of $Cr(NH_3)_5X^{2+}$ complexes, having determined that most members of the series $Co(NH_3)_5 X^{2+}$ are reduced at rates too high to measure. The CrIII complexes react as shown in the equation,

$$Cr(NH_3)_5X^{2+} + Yb^{2+} + 5H^+ \rightarrow$$

 $Cr^{2+} + Yb^{3+} + X^- + 5NH_4^+$ (3)

and follow a simple second-order rate expression. The rate constants for the halide complexes (Table 2) exhibit the $(k_{\rm Cl}/k_2 \ ca. \ 1.8 \ {\rm M}^{-1})$, and for $Cr(NH_3)_5Br^{2+}$ by 7% $(k_{\rm Cl}/k_2)$ k_2 ca. 0.8).

A similar reactivity order F>Br>Cl was found for the reductions of $Cr(H_2O)_5X^{2+}$ complexes by Yb²⁺, where the results¹¹ also lend strong support to the 15 mechanism suggested for the Cr(NH₃)₅X²⁺, by virtue of the much higher reactivity of CrN₃²⁺ than CrNCS^{2+,12}

Although a considerable number of studies have been carried out on Eu²⁺ reductions, the deduction of the

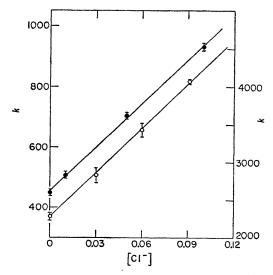


FIGURE. Chloride dependence of the apparent second-order rate constants for Co^{III} -Yb^{II} reactions. Upper line (left ordinate scale), Co(en)₃³⁺; lower line (right ordinate scale), Co(NH₃)₆³⁺.

TABLE 2. Rate constants for Yb2+-Cr(NH₃)₅X²⁺ reactions^a

Complex	10 ⁴ х[Сг ^{III}] ₀ ,м ^ь	[H+],M	$k_{2}, M^{-1}S^{-1}$
$Cr(NH_3)_5F^{2+}$	$2 \cdot 8 - 201$	0·010·10	$40.2 \\ 9.50 \\ 14.2$
$Cr(NH_3)_5Cl^{2+}$	7 \cdot 3 - 197	0·0080·017	
$Cr(NH_3)_5Br^{2+}$	6 · 6 - 36 · 2	0·0080·100	

* 15.8° and 0.20 M-ionic strength.

^b The range of [Yb²⁺]₀ was varied from *ca.* 1 to 6×10^{-4} M; pseudo first-order conditions were applicable to about half the runs.

relative order F>Br>Cl, which is unusual because other reducing agents show a smooth trend, in one direction or the other, with halide variation.3,9 The minimum at $X = Cl^{-}$ appears to represent only the particular balance struck in the relative ability of different halide ions to stabilize Cr(NH₃)₅³⁺, in comparison to the binuclear intermediate (NH₃)₅CrXYb⁴⁺ which precedes electron transfer in the IS mechanism.¹⁰ Support for the IS mechanism also comes from the very feeble effect of anions; e.g., 0.09 M free Cl⁻ increases the rate constant for Cr(NH₃)₅Cl²⁺ by $\frac{11}{3}$ 11% (k_{Cl}/k_2 ca. 1.2 M⁻¹), for Cr(NH₃)₅F²⁺ by 16%

- ¹ H. A. Laitinen, J. Amer. Chem. Soc., 1942, 64, 1133.
- ² M. G. Adamson, Thesis, University of Leeds, 1963.

- ² M. G. Adamson, Thesis, University of Leeds, 1963.
 ³ J. H. Espenson and R. T. Wang, Chem. Comm., 1970, 207.
 ⁴ J. Doyle and A. G. Sykes, J. Chem. Soc. (A), 1968, 2836.
 ⁵ A. Zwickel and H. Taube, J. Amer. Chem. Soc., 1961, 83, 793.
 ⁶ D. W. Carlyle and J. H. Espenson, Inorg. Chem., 1969, 8, 575.
 ⁷ A. Zwickel and H. Taube, J. Amer. Chem. Soc., 1959, 81, 1288.
 ⁸ D. E. Pennington and A. Haim, Inorg. Chem., 1967, 6, 2138; 1968, 7, 1659.
 ⁹ J. P. Candlin, J. Halpern, and D. L. Trimm, J. Amer. Chem. Soc., 1964, 86, 1019.
- ¹⁰ A. Haim, Inorg. Chem., 1968, 7, 1475.
- ¹¹ J. H. Espenson and A. B. Butcher, unpublished experiments.
- ¹² D. L. Ball and E. L. King, J. Amer. Chem. Soc., 1958, 80, 1091; J. H. Espenson, Inorg. Chem., 1965, 4, 121; D. P. Fay and N. Sutin, ibid., 1970, 8, 1291.

detailed mechanisms have often been made by comparisons to first-row transition-metal reducing agents, e.g. Cr^{2+} , V²⁺, and Fe²⁺. The present findings for Yb²⁺ help to validate the mechanisms suggested and many of the comparisons attempted earlier.

We acknowledge support of this research in the form of a NDEA-Title IV Predoctoral Traineeship to R.J.C., and by the Alfred P. Sloan Foundation in the form of a research fellowship to J.H.E., 1968-70.

(Received, May 5th, 1970; Com. 681.)